Transitioning Between Convolutional and Fully Connected Layers in Neural Networks

نویسندگان

  • Shazia Akbar
  • Mohammad Peikari
  • Sherine Salama
  • Sharon Nofech-Mozes
  • Anne L. Martel
چکیده

Digital pathology has advanced substantially over the last decade however tumor localization continues to be a challenging problem due to highly complex patterns and textures in the underlying tissue bed. The use of convolutional neural networks (CNNs) to analyze such complex images has been well adopted in digital pathology. However in recent years, the architecture of CNNs have altered with the introduction of inception modules which have shown great promise for classification tasks. In this paper, we propose a modified “transition” module which learns global average pooling layers from filters of varying sizes to encourage class-specific filters at multiple spatial resolutions. We demonstrate the performance of the transition module in AlexNet and ZFNet, for classifying breast tumors in two independent datasets of scanned histology sections, of which the transition module was superior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Tartan: Accelerating Fully-Connected and Convolutional Layers in Deep Learning Networks by Exploiting Numerical Precision Variability

Tartan (TRT), a hardware accelerator for inference with Deep Neural Networks (DNNs), is presented and evaluated on Convolutional Neural Networks. TRT exploits the variable per layer precision requirements of DNNs to deliver execution time that is proportional to the precision p in bits used per layer for convolutional and fully-connected layers. Prior art has demonstrated an accelerator with th...

متن کامل

تشخیص و فیلترینگ هوشمند تصاویر نامتعارف به‌کمک شبکه‌های عصبی عمیق

Currently vast improvement of internet access and significant growth of web based broadcasters have resulted in distribution and sharing of informative resources such as images worldwide. Although this kind of sharing may bring many advantages, there are certain risks such as access of kids to porn images which should not be neglected. In fact, access to these images can be a threat to the cult...

متن کامل

Feature Evaluation of Deep Convolutional Neural Networks for Object Recognition and Detection

In this paper, we evaluate convolutional neural network (CNN) features using the AlexNet architecture developed by [9] and very deep convolutional network (VGGNet) architecture developed by [16]. To date, most CNN researchers have employed the last layers before output, which were extracted from the fully connected feature layers. However, since it is unlikely that feature representation effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017